加入收藏 | 设为首页 | 会员中心 | 我要投稿 源码门户网 (https://www.92codes.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 创业 > 模式 > 正文

让自动驾驶撞墙,刷别人的脸付账:最新的AI漏洞让我们开眼界

发布时间:2020-11-04 21:08:28 所属栏目:模式 来源:网络整理
导读:副标题#e# 那些专家们曾经担心过的 AI 算法漏洞是可以实现的,没想到过的也可以实现。 刚刚过去的 1024,极棒大赛上演了全新形式的人机攻防对决。 劫持正在飞行的无人机、干扰自动驾驶汽车 「致盲」、戴上口罩刷别人的脸结账,在上周六的 GeekPwn 2020 国际
副标题[/!--empirenews.page--]

那些专家们曾经担心过的 AI 算法漏洞是可以实现的,没想到过的也可以实现。

刚刚过去的 1024,极棒大赛上演了全新形式的人机攻防对决。

劫持正在飞行的无人机、干扰自动驾驶汽车 「致盲」、戴上口罩刷别人的脸结账,在上周六的 GeekPwn 2020 国际安全极客大赛上,全球顶级白帽黑客们向我们揭开了 AI 模型、物联网、5G 等领域的不少未知漏洞。

本次大赛,有超过 600 支来自不同科技公司、大学的极客队伍报名参赛,最终有近 50 支在 10 月 24 日共同面向 500 万元奖金池发起了冲击。

决赛开始之前,今年的 GeekPwn 大赛早在 3 月即开放了各赛题的报名,4 月份各项比赛公布规则,在 8 月底 CAAD 线上比赛宣告结束。10 月 24 日来到现场的团队,各个身怀绝技。

他们面临的挑战也不同以往——主办方为选手们准备了全新的挑战。今年的八大赛题包括「新基建」安全大赛、基于漏洞攻破挑战赛、非基于漏洞攻破挑战赛、云安全比赛、少年黑客马拉松大赛、虚假人脸 AI 识别大赛、AI 变脸口罩挑战赛以及窃密与反窃密挑战赛。每个赛题下还分为多个单项比赛,关注不同的方向。

让自动驾驶撞墙,刷别人的脸付账:最新的AI漏洞让我们开眼界

其中,腾讯安全联合 GeekPwn 举办的国内首个新基建安全大赛涵盖了 5G、物联网和人工智能,其中各个挑战者们针对车联网、无人机、安检设备、智能电表等目标的破解,让人们对这些产业的安全有了新的认识。

戴上口罩,刷别人的脸

刷脸门禁、手机解锁、机场安检…… 使用人工智能算法的人脸识别,最近已经成为人们每天都在使用的技术。因为 2020 年初的新冠疫情,越来越多佩戴口罩的情形为人脸识别带来了新的挑战。有一些科技公司已经推出了即使戴上口罩也能识别出人脸的新技术,据称准确率可以达到 99%。但另一方面,人们佩戴的口罩覆盖了人脸的很大一部分面积,也为加入对抗样本进行人脸识别破解留下了「后门」。

这场挑战模拟了人脸识别自动售货机和 ATM 取货场景,选手们可以利用 AI 算法自制印上攻击样本的口罩遮挡自己的面部,需要在 150 秒内让售货机与取款机人脸识别算法识别成主办方指定的目标,包括蒋昌建、「美国队长」克里斯 · 埃文斯、伊隆 · 马斯克等人。

在这其中,挑战的目标还包括白盒算法(ArcFace 算法)与黑盒算法两个赛道。顾名思义,黑盒算法是指攻击者事先并不知晓人脸识别算法的构成,破解难度更大。

让自动驾驶撞墙,刷别人的脸付账:最新的AI漏洞让我们开眼界

GeekPwn 创始人王琦(大牛蛙)戴上了假冒主持人蒋昌建的口罩:AI 对抗样本的攻击,并不是把目标人脸的一部

比赛对于两台机器各设置了三个难度递增的关卡,每一关口罩的有效攻击区域依次递减,对抗样本图案在口罩上的面积从 75%,降低至 67%,再降低至 50%,难度逐渐增大,前一关挑战失败则意味着失去后一关的挑战资格。

入围决赛的团队包括 AFMask 团队,海棠初白团队,来自清华大学和北京大学的动动动动弦团队,以及来自清华大学计算机系和 RealAI 的 TSAIL 队。

戴上口罩,我就能变脸取钱吗?我们时常会听到各家厂商谈起「金融级别安全」的支付技术,要想破解跟钱有关的人脸识别系统,并不是说说那么简单的,事实上比赛的进程也验证了人们的预料。

第一个出场的动动动动弦团队,在第一轮两个挑战均告失败;第二组 AFMask 团队两项第一轮均破解成功,但在第二轮两项均挑战失败。TSAIL 和海棠初白两队也都倒在了第一轮。

刷脸支付难以破解,或许也是因为挑战的规则略显严格:每次尝试仅有 45 秒时间,只有一组队伍闯过了第一关。另外由于比赛只要求「置信度」达到 50% 即告闯关成功,在现实世界中支付环境的要求显然更高,对于我们来说,刷脸支付被「盗号」的可能性仍然很低。

让 Autopilot「自动撞墙」

自动驾驶虽然距离大规模应用还有一段时间,但是在量产车上已经有不少可以让司机解放双手的辅助驾驶功能了。对于不少人来说,有没有 L2 级自动驾驶已经成为了最近买车时着重考虑的因素。在本届极棒大赛中对自动驾驶的干扰挑战,向我们展示了这种技术的一些隐患。

进行本次挑战的白帽黑客吴潍浠表示,要对汽车自动驾驶系统中的毫米波雷达进行干扰,采用的设备体积很小,价格也不贵。目前毫米波雷达是各类传感器中公认稳定性较高的方式。

我们知道,目前的一些辅助驾驶技术,如特斯拉上的 Autopilot,是通过摄像头和雷达来收集路面信息的,不同汽车选择的传感器不太一样(如特斯拉就没有用到激光雷达),但算法会收集所有的输入信息进行综合判断。技术人员制作的攻击用白色小盒子,看起来很不起眼,但它可以造成的扰乱效果却可以「致命」。

让自动驾驶撞墙,刷别人的脸付账:最新的AI漏洞让我们开眼界

首先是没有干扰的测试,汽车的自动驾驶会在遇到纸箱堆成的「墙」面前停下来。

把干扰器放到「墙脚下」,令人疑惑的现象出现了:汽车在进入自动驾驶模式后,看到眼前由纸箱堆成的墙之后似乎犹豫了一下,有一个减速过程,但无法识别前面的物体又加速撞了上去。最终「事故」发生,在实际环境下的黑客攻击宣告成功。

让自动驾驶撞墙,刷别人的脸付账:最新的AI漏洞让我们开眼界

在很多带有自动驾驶功能的汽车中,只要有一种传感器给出危险讯号,则系统就会指示车辆刹停。但在实验中汽车仍然撞向障碍物,这次挑战的成功,让人们意识到在自动驾驶汽车进入实用化之前,还有很多工作要做。

据主办方 GeekPwn 介绍,毫米波雷达攻击的测试结果已提交给特斯拉方面,黑客们也将帮助车企对自动驾驶安全进行持续改进。

(编辑:源码门户网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读