加入收藏 | 设为首页 | 会员中心 | 我要投稿 源码门户网 (https://www.92codes.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

机器学习的正则化是什么意思?

发布时间:2019-10-19 22:31:48 所属栏目:经验 来源:佚名
导读:副标题#e# 经常在各种文章或资料中看到正则化,比如说,一般的目标函数都包含下面两项 其中,误差/损失函数鼓励我们的模型尽量去拟合训练数据,使得最后的模型会有比较少的 bias。而正则化项则鼓励更加简单的模型。因为当模型简单之后,有限数据拟合出来结

1 抛硬币,推断正面朝上的概率。如果只能抛5次,很可能5次全正面朝上,这样你就得出错误的结论:正面朝上的概率是1--------过拟合!如果你在模型里加正面朝上概率是0.5的先验,结果就不会那么离谱。这其实就是正则。

2. 最小二乘回归问题:加L2范数正则等价于加了高斯分布的先验,加L1范数正则相当于加拉普拉斯分布先验。

(编辑:源码门户网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读